Dogs pick up on words in a similar way to human babies, 研究发现

That’s paw-some! Dogs can pick up on individual words in a sentence using similar computations and brain regions as human babies, 研究发现

  • Infants learn to spot individual words in speech before learning their meaning
  • They do this by tracking common patterns of syllables that might form words
  • Experts led from Eötvös Loránd University scanned the brains of listening dogs
  • They found dogsbrain waves change when they hear familiar syllable patterns
  • This is the first time ‘statistical learninghas been shown in a non-human species
  • Dogs are able to pick up on individual words in sentences spoken to them using similar computations and brain regions as human babies, 研究发现.

    When we are infants, we learn to spot new words in a stream of speech first, before we actually learn what each individual word means.

    To tell where each word ends and another begins, babies use complex calculations that keep track of which syllables appear together — and thus likely form words.

    By using a combination of brain imaging techniques, experts led from Hungary’s Eötvös Loránd University have shown that dogs are capable of similar feats.

    This is the first time that the capacity to apply so-called statistical learning has been shown to be demonstrated in a non-human mammal.

    The findings come in the same week that a study revealed that dogs tilt their heads when listening because it helps them to hear and process information more easily.

    向下滚动观看视频

    Dogs are able to pick up on individual words in sentences spoken to them using similar computations and brain regions as human babies, 研究发现

    HOW AN EEG WORKS

    An electroencephalogram (EEG) is a recording of brain activity which was originally developed for clinical use.

    During the test, small sensors are attached to the scalp to pick up the electrical signals produced when brain cells send messages to each other.

    In the medical field, EEGs are typically carried out by a highly trained specialist known as a clinical neurophysiologist.

    These signals are recorded by a machine and are analysed by a medical professional to determine whether they’re unusual.

    An EEG can be used to help diagnose and monitor a number of conditions that affect the brain.

    It may help identify the cause of certain symptoms, such as seizures or memory problems.

    最近, technology companies have used the technique to create brain-computer interfaces, sometimes referred to as ‘mind-readingdevices.

    This has led to the creation and design of a number of futuristic sounding gadgets.

    These have ranged from a machine that can decipher words from brainwaves without them being spoken to a headband design that would let computer users open apps using the power of thought.

    广告

    ‘Keeping track of patterns is not unique to humans — many animals learn from such regularities in the surrounding world, this is called statistical learning,’ explains paper author and ethologist Marianna Boros of the Eötvös Loránd University.

    ‘What makes speech special is that its efficient processing requires complex computations. To learn new words from continuous speech, it is not enough to count how often certain syllables occur together.

    ‘It is much more efficient to calculate how probably those syllables occur together.

    ‘This is exactly how humans, even 8-month-old infants, solve the seemingly difficult task of word segmentation — they calculate complex statistics about the probability of one syllable following the other.

    ‘Until now we did not know if any other mammal can also use such complex computations to extract words from speech. We decided to test family dogsbrain capacities for statistical learning from speech.

    ‘Dogs are the earliest domesticated animal species and probably the one we speak most often to. 仍然, we know very little about the neural processes underlying their word learning capacities.

    在研究中, the researchers measured dogselectric brain activity using an electroencephalogram (EEG).

    The scans revealed key differences in dogsbrain waves for frequent and rare words.

    Lilla Magyari, an author of the study, 解释: ‘We saw differences in dogsbrain waves for frequent compared to rare words.

    ‘But even more surprisingly, we also saw brain wave differences for syllables that always occurred together compared to syllables that only occasionally did, even if total frequencies were the same.

    ‘So it turns out that dogs keep track not only of simple statistics (the number of times a word occurs) but also of complex statistics (the probability that a word’s syllables occur together).

    ‘This has never been seen in other non-human mammals before. It is exactly the kind of complex statistics human infants use to extract words from continuous speech.

    下一个, the researchers used functional MRI scanning to explore how similar the brain regions responsible for this complex computational capacity in dogs are to those in the human brain.

    在研究中, the researchers measured dogs' electric brain activity using an electroencephalogram (EEG)

    在研究中, the researchers measured dogselectric brain activity using an electroencephalogram (EEG)

    As with the EEG scans, the tests were performed on awake, cooperating, unrestrained animals, although the dogs involved in the fMRI experiments were previously trained to lie motionless for the duration of the scans.

    ‘We know that, in humans, both general learning-related and language-related brain regions participate in this process. And we found the same duality in dogs,’ explained Dr Boros.

    ‘Both a generalist and a specialist brain region [the basal ganglia and auditory cortex, 分别] seemed to be involved in statistical learning from speech, but the activation patterns were different in the two.

    The researchers used functional MRI scanning to explore how similar the brain regions responsible for this complex computational capacity in dogs are to those in the human brain

    The researchers used functional MRI scanning to explore how similar the brain regions responsible for this complex computational capacity in dogs are to those in the human brain

    As with the EEG scans, the tests were performed on awake, cooperating, unrestrained animals, although the dogs involved in the fMRI experiments were previously trained to lie motionless for the duration if the scans

    As with the EEG scans, the tests were performed on awake, cooperating, unrestrained animals, although the dogs involved in the fMRI experiments were previously trained to lie motionless for the duration if the scans

    ‘The generalist brain region responded stronger to a random speech stream (where no words could be spotted using syllable statistics) than to a structured speech stream (where words were easy to spot just by computing syllable statistics).

    ‘The specialist brain region showed a different pattern: here we saw brain activity increase over time for the structured but not for the random speech stream.

    ‘We believe that this activity increase is the trace word learning leaves on the auditory cortex.

    When we are infants, we learn to spot new words in a stream of speech first, before we actually learn what each individual word in fact means. To tell where each word ends and another begins, babies use complex calculations that keep track of which syllables appear together — and thus likely form words

    When we are infants, we learn to spot new words in a stream of speech first, before we actually learn what each individual word in fact means. To tell where each word ends and another begins, babies use complex calculations that keep track of which syllables appear together — and thus likely form words








    总体, the findings suggest that the neural processes known to be key for human language acquisition may not be unique to humans after all, 根据研究人员.

    Attila Andics, an author of the study, 添加: ‘But we still don’t know how these human-analogue brain mechanisms for word learning emerged in dogs.

    ‘Do they reflect skills that developed by living in a language-rich environment, or during the thousands of years of domestication, or do they represent an ancient mammalian capacity?

    ‘By studying speech processing in dogs, even better dog breeds with different communication abilities and other species living close to humans, we can trace back the origins of human specializations for speech perception.

    该研究的全部发现已发表在该杂志上 Current Biology.

    狗首场比赛关于 20,000 TO 40,000 几年前

    对世界上最古老的已知狗遗骸进行的基因分析表明,狗是由居住在欧亚大陆的人一次驯化的, 周围 20,000 至 40,000 几年前.

    克里希纳·维拉玛博士, 石溪大学进化学助理教授, 告诉MailOnline: ‘狗的驯化过程可能是一个非常复杂的过程, 涉及几代特征性狗的特征逐渐演变.

    ‘目前的假设是,狗的驯化可能是被动产生的, 在世界上某个地方生活着一群狼,他们生活在狩猎采集营地的郊区,以人类为食的垃圾.

    ‘那些更温和,不那么凶悍的狼在这方面会更成功, 虽然人类最初并未从此过程中获得任何好处, 随着时间的流逝,他们会发展出某种共生关系 [互惠互利] 与这些动物的关系, 最终演变成我们今天看到的狗。’

    广告

    评论被关闭.